Dehydroepiandrosterone-Regulated Testosterone Biosynthesis via Activation of the ERK1/2 Signaling Pathway in Primary Rat Leydig Cells.

نویسندگان

  • Lin Liu
  • Jian Kang
  • Xiao Ding
  • Di Chen
  • Yingqiao Zhou
  • Haitian Ma
چکیده

BACKGROUND Dehydroepiandrosterone decreases with age and this reduction has been shown to be associated with physical health in human. Some studies have suggested that the effects of DHEA are exerted after it is biotransformed into more biologically-active hormones in peripheral target cells. This study investigated the effects of DHEA on the testosterone biosynthesis and possible signaling pathway mechanism underlying these DHEA effects were also explored in primary rat Leydig cells. METHODS Primary Leydig cells were treated with DHEA and then detected testosterone content by RIA and steroidogenic enzymes, ERK1/2 signal pathway factors protein expression level by Western blot. RESULTS Incubation of primary Leydig cells with DHEA significantly increased testosterone content and 3β-HSD and 17β-HSD protein expression levels, while aromatase protein expression levels were decreased. Compared with the control group, p-ERK1/2 and p-CREB protein levels were significantly increased in DHEA-treated groups. Testosterone content was significantly decreased in the DHEA-treated group pre-incubated with U0126 (p-ERK1/2 inhibitor). Additionally, the rise in p-ERK1/2, 3β-HSD and 17β-HSD protein levels induced by DHEA was reversed when cells were pre-incubated with U0126. Interestingly, no significant difference was found in aromatase protein expression level in cells pretreated with U0126. CONCLUSION These findings demonstrate that (a) exogenous DHEA might preferentially convert to testosterone rather than estradiol due to the up-regulation of 3β-HSD and 17β-HSD protein levels and the down-regulation of aromatase protein level in primary Leydig cells, and (b) the action of DHEA is at least partly associated with the elevation of p-ERK1/2 and p-CREB protein levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annexin A5 regulates Leydig cell testosterone production via ERK1/2 pathway

This study was to investigate the effect of annexin A5 on testosterone secretion from primary rat Leydig cells and the underlying mechanisms. Isolated rat Leydig cells were treated with annexin A5. Testosterone production was detected by chemiluminescence assay. The protein and mRNA of Steroidogenic acute regulatory (StAR), P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid d...

متن کامل

Gonadotropin-releasing hormone positively regulates steroidogenesis via extracellular signal-regulated kinase in rat Leydig cells.

Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether com...

متن کامل

Fibroblast Growth Factor 9 Activates Akt and MAPK Pathways to Stimulate Steroidogenesis in Mouse Leydig Cells

Fibroblast growth factor 9 (FGF9) is a multifunctional polypeptide belonging to the FGF family and has functions related to bone formation, lens-fiber differentiation, nerve development, gap-junction formation and sex determination. In a previous study, we demonstrated that FGF9 stimulates the production of testosterone in mouse Leydig cells. In the present study, we used both primary mouse Ley...

متن کامل

Mamld1 Knockdown Reduces Testosterone Production and Cyp17a1 Expression in Mouse Leydig Tumor Cells

BACKGROUND MAMLD1 is known to be a causative gene for hypospadias. Although previous studies have indicated that MAMLD1 mutations result in hypospadias primarily because of compromised testosterone production around the critical period for fetal sex development, the underlying mechanism(s) remains to be clarified. Furthermore, although functional studies have indicated a transactivation functio...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 36 5  شماره 

صفحات  -

تاریخ انتشار 2015